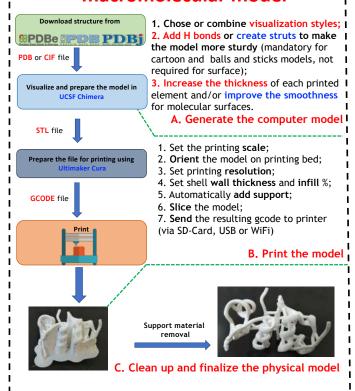


A guideline for 3D printing of macromolecular models on the cheap Marius Mihășan


BioActive research group, Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania

1. Macromolecular models are needed

for teaching and demonstration

The models should be: Based on real scientific data: Depicted using standardized representations; Easy to edit and adapt to the outcomes of a specific lesson: Cheap to fabricate and reproduce: Easy to distribute 3D printing

2. Steps involved when fabricating a! macromolecular model

3. Examples of 3D printed models

Figure 1. Physical model of a DNA replication fork

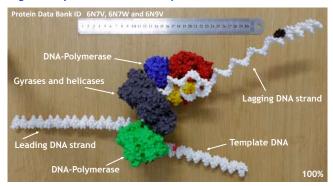
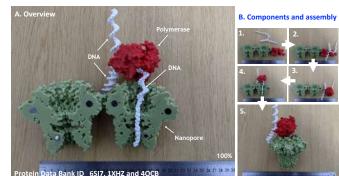



Figure 2. Physical model of a DNA-sequencing protein nanopore

A guideline for 3D printing of macromolecular models on the cheap Marius Mihășan

BioActive research group, Faculty of Biology, Alexandru Ioan Cuza University, Iaşi, Romania

3. Examples of printed models (continued)

Figure 3. Antibodies interacting with an antigen

Light chains

Sugars

Heavy chains

1 2 3 4 5 6 7 8 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 100%

Figure 4. Main components a the 20S yeast proteasome

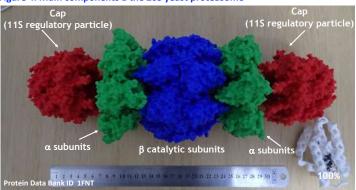


Figure 5. Catalytic and cofactor binding sites in enzymes

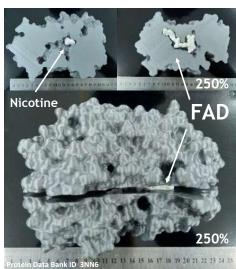


Figure 6. Main components a bovine mitochondrial ATP synthase

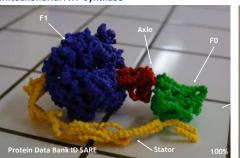



Figure 7. Protein domains interacting with DNA

100%

Figure 8. Physical model of a transmembrane channel - Human Alpha4Beta2 nicotinic receptor

4. The "real" guide complete with technical details:

https://doi.org/10.1002/bmb.21493