Identification of 6-hydroxi-nicotine as a novel neuroprotectant with antioxidant properties

ALEXANDRU IOAN CUZA UNIVERSITY of IASI

www.uaic.ro

Marius Mihasan^{1*}, Marius Stefan¹, Roderich Brandsch², Lucian Hritcu¹

¹Department of Biology, Alexandru Ioan Cuza University, Iasi, Romania, ²Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Biology, Albert-Ludwigs-University Freiburg, Germany

*Mailing address: Room B123, Biochemistry and Molecular Biology Laboratory, Faculty of Biology, "Alexandru Ioan Cuza" University, Copou Bvd, No.22B, 700506 tel:+40(0)232201102 - 2434 e-mail: marius.mihasan@uaic.ro

Nicotine as a potential neuro-protective drug

- anti-oxidant effects at low concentrations
- cognition-enhancing agent
- well-known agonist of nicotinic acetylcholine receptors (nAChR)

Murray and Abeles, *Aging & Mental Health.* 2002, 6, 129–138.

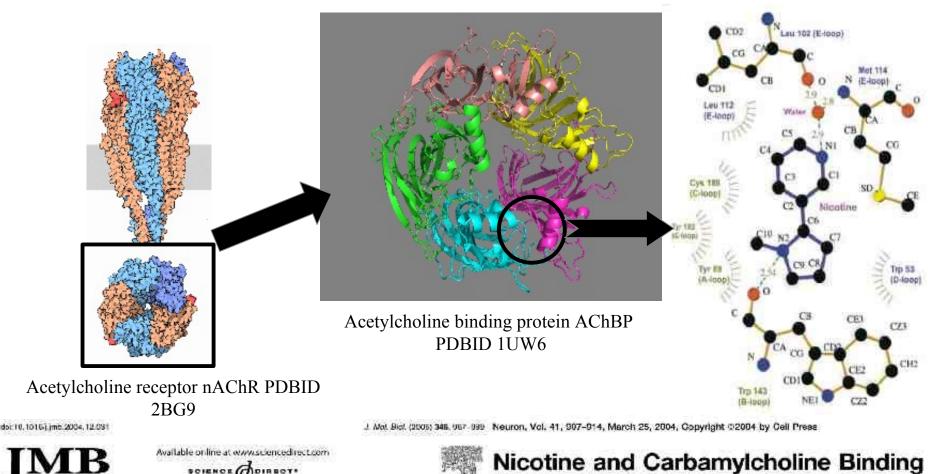

The good things!!!

• short half-time (about 2 hours)

 proven negative effects on various other organs such as lungs

 linked to cigarettes and the negative publicity associated with smoking
Beccafusco, *Mol Interv.* 2004 Oct;4(5):285-95.

The bad things!!!



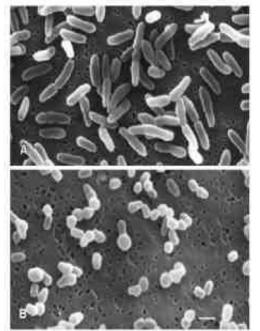
AChBP structure and nicotine binding

ALEXANDRU IOAN CUZA UNIVERSITY of IASI

www.uaic.ro

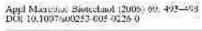
Refined Structure of the Nicotinic Acetylcholine **Receptor at 4 A Resolution**

SCIENCE DOIRBOT

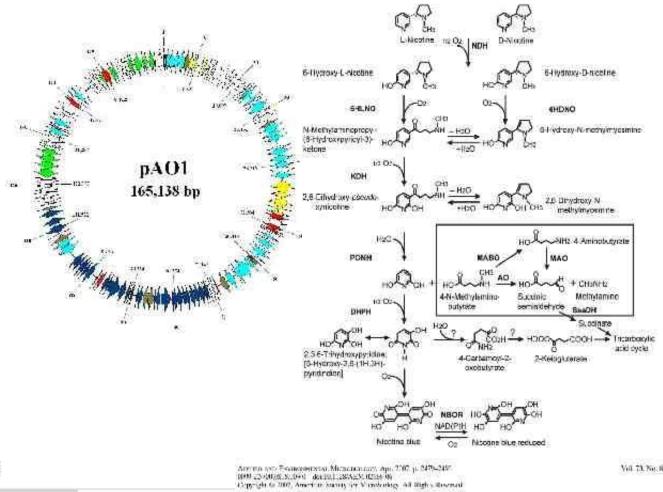

Nigel Unwin

Nicotine and Carbamylcholine Binding to Nicotinic Acetylcholine Receptors ELSEVIER as Studied in AChBP Crystal Structures

Patrick H.N. Celie, Sarah E. van Rossum-Fikkert, Willem J. van Dijk,¹ Katjuša Brejc,¹³ August B. Smit,² and Titia K. Sixma^{1,4}


2-5 binding sites at selec sponse to agonist bindi opened. LGICs are invol-

Nicotine and Arthrobacter nicotinovorans pAO1


Arthrobacter nicotinovorans

under the electron microscope Gram positive actinobacterium Isolated from nicotine rich soil

MINI-REVIEW

Roderich Brandsch

An NAD(P)H-Nicotine Blue Oxidoreductase Is Part of the Nicotine Regulon and May Protect Arthrobacter nicotinevorans from Oxidative Stress during Nicotine Catabolism⁹

Microbiology and biochemistry of nicotine degradation

Marius Mihasan,^{1,6} Calin-Bogdan Chiciban,^{1,6} Thorsten Friedrich,² Viad Ariania, and Roderich Brandsch^{1,6} Purpose of the study and experimental design

Identification of potential neuro-protective agents with biotechnological applications derived from the *A. nicotinovorans* metabolites

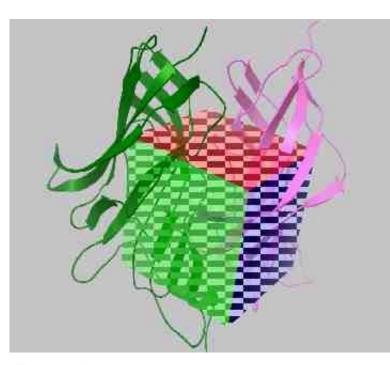
A. Computational screening of all the *A. nicotinovorans* nicotine metabolites by:

- *in-silico* docking with nAChBP – AutoDock and ADT, Olson Laboratory, U.S.A.

(Morris et. al., 1998, J. Comp. Chem. 19: 1639-1662)

- QSAR evaluation of the anti-oxidant properties (Rastija et. al., 2009, Eur. J. Med. Chem. 44, 400-408)

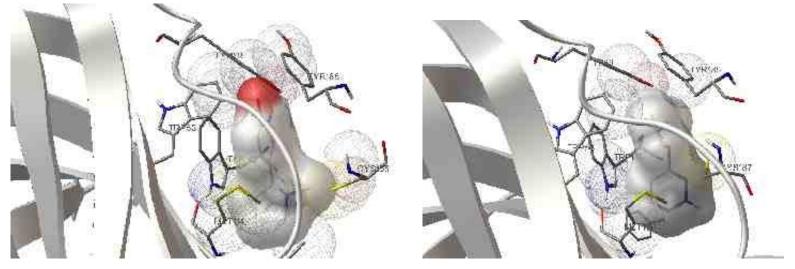
B. *In-vivo* evaluation of the identified compounds on:


- *s*hort-term memory by means of Y-maze task
- working and reference memory by means of radial arm-maze task

- oxidative stress levels in the temporal lobe measuring the extent of some lipid peroxidation products like malondialdehyde (MDA) and defense enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX)

Computational results

In-silico targeted docking – *rigid receptor* subunits A and B from PDB ID 1UW6 - *targeted region* - a cube of aprox. 150 Å³ centered on Tyr143 - *flexibile ligands* – 3D structures obtained from Pub Chem database


	Binding Ligand		
Tested Compound	Energy	Efficiency	RMSD*
L-Nicotine	-6.17	-0.51	0.2 Å
CID 89594	-6.17	-0.51	0.25 Å
	-6.12	-0.51	0.29 Å
D-Nicotine	-6.42	-0.54	0.58 Å
pseudonicotine	-6.21	-0.52	0.62 Å
CID 89594	-6.12	-0.51	0.69 Å
6-hydroxy-L-Nicotine	-6.66	-0.51	0.19 Å
CID 439383	-6.61	-0.51	0.21 Å
	-6.57	-0.51	0.25 Å
6-hydroxy-D-Nicotine	-6.51	-0.5	0.75 Å
CID 439886	-6.45	-0.5	0.79 Å
	-6.13	-0.47	0.76 A
6-hydroxy-N-methylmyosmine	-5.23	-0.37	1.26 Å
CID 9543125	-5.04	-0.36	1.29 Å
	-4.85	-0.35	1.35 Å
2,6-dihydroxy-N-methylmyosmine	-5.23	-0.37	1.29 Å
CID 9543125	-5.04	-0.36	1 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	4.85	-0.35	1.35 A

ALEXANDRU IOAN CUZA UNIVERSITY of IASI

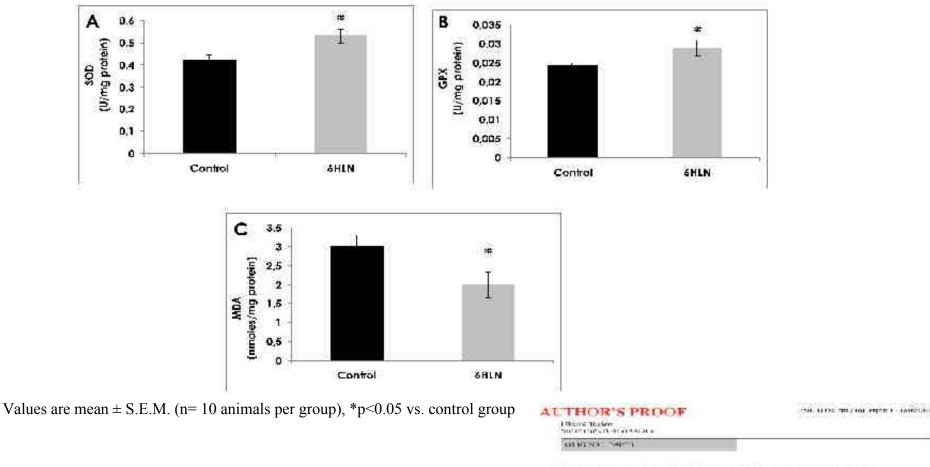
The binding pose of 6-hydroxy-L-Nicotine (A) and nicotine (B) as depicted by *in-silico* docking experiments

(image created with UCSF Chimera, Pettersen et. al., J Comput Chem. 2004 Oct;25(13):1605-12)

Tested Compound	Molar refractivity	Van der Waals volume	gmin IC50	
6-hydroxy-L-Nicotine	48.5532	179.67	0.609 43.09	
L/D-Nicotine	48.6942	159.98	-0.023 54.54	
Cotinine	50.1631	166.14	0.230 46.52	

QSAR descriptors used for the calculation of IC50

ALEXANDRU IOAN CUZA UNIVERSITY of IAȘI


In-vivo effects of 6-hidroxy-L-nicotine on rats cognitive functions

Animals and drug administration

- male Wistar rats (3-4 months old)
- 6-hidroxy-L-nicotine was injected intraperitonealy, 0.3 mg/kg b.w, daily, for 7 consecutive days. Control animals received i.p. an equal volume of sterile saline (1 ml/kg b.w.)
- rats were trained after 7 continuous days of 6-hidroxy-L-nicotine administration.

In-vivo effects of 6-hidroxy-L-nicotine on rat brain oxidative status functions

fet-hydroxy-(-nicotine from Arthrobacae nicotinororans sustain spatial memory formation by decreasing brain nutrative stress in rats

i ne na Modini, Micris, Michael Raderica Transfacto Markos Micacar

ALEXANDRU IOAN CUZA UNIVERSITY of IASI

What next?

- is 6-hidroxy-L-nicotine able to cross the blood-brain barrier?
- does 6-hidroxy-L-nicotine still retain the systemic toxicity of nicotine?

- taking into account that nAchRs exist in various pentameric subtypes (Wu and Lukas, 2011, *Biochemical Pharmacology* 82, 800–807), what is specificity of this compound in regard to nAchR subunits and what is the relevance of this specificity for neurodegenerative dizorders (e.g. Alzheimer's disease)?

apl. Prof. **Roderich Brandsch, PhD** Institute of Biochemistry and Molecular Biology, Freiburg i. Br., Germany

- nicotine metabolism and pAO1 molecular organization

Assist. Prof. **Marius Stefan, PhD** Biology Faculty, A.I. Cuza University of Iasi

- Arthrobacter nicotinovorans manipulations

Assist. Prof. Lucian Hritcu, PhD Biology Faculty, A.I. Cuza University of Iasi

- animal tests and assessment of cognitive functions

Prof. Vlad Artenie, PhD Biology Faculty, A.I. Cuza University of Iasi

- fruitful talks on enzyme assays and oxidative stress

Marius Mihasan was supported by CNCSIS-UEFISCSU, project number PN-II-RU 337/2010

ALEXANDRU IOAN CUZA UNIVERSITY of IASI

www.uaic.ro

http://www.bio.uaic.ro/cercetare/contracte/PD337-Mihasan/pd337.html